Устройство, принцип действия, диагностика датчиков массового расхода воздуха Mass Air Flow Sensor (MAF Sensor)

Содержание
  1. Назначение и расшифровка аббревиатуры
  2. ДМРВ или ДАД?
  3. Размещение ДМРВ в автомобиле
  4. Принцип работы и обслуживание
  5. Датчик объёмного расхода воздуха,работающий на принципе подсчета вихрей Кармана.
  6. Датчик объёмного расхода воздуха, с механическим измерительным потенциометром.
  7. Датчик массового расхода воздуха Mass Air Flow Sensor (MAF Sensor)
  8. Датчик массового расхода воздуха BOSCH HFM5
  9. Виды ДМРВ их конструктивные особенности и принцип работы
  10. Объёмный
  11. Проволочные датчики
  12. Пленочные воздухомеры
  13. Можно ли обойтись без него?
  14. Промывать или нет?
  15. Как диагностировать неисправность?
  16. Признаки неисправности
  17. Код ошибки ДМРВ
  18. Причины выхода из строя ДМРВ
  19. Как проверить датчик массового расхода воздуха
  20. Способ 1 — внешний осмотр
  21. Способ 2 — отключение питания
  22. Способ 3 — проверка мультиметром
  23. Способ 4 — проверка сканером Вася Диагност
  24. Способ №1 — отключение расходомера воздуха
  25. Способ 5 — замена на исправный
  26. Способ №6 — проверка с помощью сканера
  27. Замена ДМРВ
  28. Как почистить датчик массового расхода воздуха
  29. Что нельзя делать
  30. Использование очистителя ДМРВ
  31. Ремонт датчика расхода воздуха своими руками
  32. Как проверить ДМРВ частотного типа
  33. Как продлить жизнь ДМРВ
  34. Чего опасаться?
  35. Что происходит в этот момент?
  36. Как не надо?
  37. Как правильно?
  38. Советы

Назначение и расшифровка аббревиатуры

Расходомеры, они же волюметры или ДМРВ (не путать с ДМРТ и ДВРМ), расшифровываются как датчики массового расхода воздуха, устанавливаются в автомобилях на дизеле или бензиновых ДВС. Место расположения данного датчика найти несложно, поскольку он контролирует подачу воздуха, то и искать его следует в соответствующей системе, а именно, после воздушного фильтра, на пути к дроссельной заслонке (ДЗ).

Место установки ДМРВ на Газель 405

Подключение устройства осуществляется к блоку управления ДВС. В тех случаях, когда ДМРВ находится в неисправном состоянии или отсутствует, грубый расчет может быть произведен исходя из положения ДЗ. Но при таком способе измерения нельзя обеспечить высокую точность, что незамедлительно приведет к перерасходу топлива. Это еще раз указывает на ключевую роль расходометра при расчете подаваемой через форсунки топливной массы.

Помимо информации с ДМРВ, блок управления также обрабатывает данные, поступающие со следующих устройств: ДРВ (датчик распределительного вала), ДД (измеритель детонации), ДЗ, датчик температуры системы охлаждения, измеритель кислотности (лямбда зонд) и т.д.

ДМРВ или ДАД?

Датчик абсолютного давления (ДАД) совместно с датчиком температуры (ДТВ) также контролирует, какое количество воздуха поступает во впускной коллектор. На основании этих показаний контроллер формирует команду-импульс на форсунки. Важное отличие ДАД от ДМРВ — отсутствие воздуха в корпусе, поскольку этот датчик работает на основе измерения показаний разницы давлений на входе и давления в вакуумной камере. Конструктивной особенностью ДАД является высокочувствительная диафрагма, которая растягивается под воздействием давления во впускном коллекторе. Этот процесс влияет на сопротивление тензорезисторов, вследствие чего изменяется напряжение.

Датчик абсолютного давления (на фото) и ДМРВ работают по разным принципам

ДАД намного дешевле датчика массового расхода воздуха, однако алгоритм его работы менее совершенен. Да и вообще далеко не все блоки управления могут корректно работать с ДАД. Более того, при переходе на датчик абсолютного давления мотор может реагировать на открытие дросселя с гораздо большей задержкой, чем с родным ДМРВ. И, конечно же, просто заменить ДМРВ на ДАД без серьезных доработок не получится в силу разности их конструкции и даже расположения.

Есть двигатели, где выбормежду ДАД и ДМРВ не стоит, потому что на моторе присутствуют оба эти датчика сразу!

Обычно мысли об установке ДАД вместо штатного датчика массового расхода воздуха появляются при отказе последнего, а также во время тюнинга мотора — особенно если происходит перевод атмосферника на турбонаддув. Однако некоторые владельцы сознательно отказываются от ДМРВ из-за его высокой стоимости и не самого большого ресурса. Ведь при неудачном стечении обстоятельств датчик может выйти из строя уже через 60-70 тысяч километров пробега, а к цифре 120-130 тысяч на одометре многих бюджетных автомобилей он практически гарантированно “умирает”.

Но те, кто не заморачивается доработками двигателя, обычно ездят со штатным датчиком массового расхода воздуха, а не заменяют его связкой ДАД+ДТВ (датчик температуры воздуха). Тем более, что далеко не все блоки управления двигателем работают с датчиком абсолютного давления лучше, чем с родным ДМРВ. Какой из датчиков более совершенен по конструкции, однозначно ответить сложно – тем более, если речь идёт о попытке замены одного (и часто уже неисправного) расходомера другим. Ведь история знает множество примеров, когда счастливые владельцы наматывали по несколько сотен тысяч километров как на двигателе с родным расходомером, так и на моторе с датчиком абсолютного давления, особенно если последний штатно ставили на заводе.

Размещение ДМРВ в автомобиле

Наиболее частое место размещения ДМРВ — между фильтром и впускным коллектором в воздушном патрубке. Именно через него в автомобиль поступает воздух, прошедший очистку в воздушном фильтре. В датчик массового расхода топлива иногда встраивают датчик температуры воздуха.

При монтаже ДМРВ важно соблюдать направление установки датчика относительно воздушного потока. Многие датчики имеют симметричное крепление. Поэтому на них наносится стрелка, указывающая направление движения воздушного потока.

Принцип работы и обслуживание

Оптимальная работа двигателя будет обеспечена, если соотношение бензина к воздуху в горючей смеси будет составлять 1/14. Функцией датчика расходомера в авто является определение объема поступившего воздуха и передача этой информации блоку управления бортового компьютера. На основании полученной информации компьютер производит расчеты и дает команду впрыскивать такое количество бензина, какое будет оптимальным для поступившего объема воздуха.

Во время эксплуатации нагревательный элемент расходомера, естественно, загрязняется. Для его очищения, когда глушится двигатель, на него в течение одной секунды подается максимальное количество электроэнергии, и он нагревается до температуры 1100 градусов Цельсия. Таким образом, все загрязнения выгорают.

Датчик массового расхода воздуха является надежным прибором в эксплуатации, но не стоит выполнять его ремонт самостоятельно. Если выявлена неисправность, лучше обратиться для ее устранения к специалисту. Неработающий датчик меняют на новый прибор, так как ремонту он не подлежит.

Недостаток расходомера еще в том, что он определяет количество поступающего воздуха. Чтобы определить необходимое количество бензина нужно знать массу воздуха, поэтому необходимо при снятии показаний датчика учитывать плотность воздуха. Чтобы решить эту проблему около датчика расхода в воздухосборнике установили датчик температуры воздуха.

Для стабильной работы ДМРВ, необходимо, чтобы был незагрязненным воздушный фильтр. Загрязняются платиновые спирали. Если они загрязнены, их можно промыть очистителем для карбюратора. Но это нужно делать правильно, иначе придется менять датчик массового расхода воздуха на новый.

Датчик объёмного расхода воздуха,работающий на принципе подсчета вихрей Кармана.


Датчик расхода воздуха производства MITSUBISHI, работающий на принципе подсчета вихрей Кармана.
Вихревой датчик расхода воздуха, использует метод подсчета вихрей Кармана, которые образуются в ламинарном воздушном потоке, на пути которого встречается препятствие с острыми кромками. Воздушные вихри срываются с этих кромок с частотой, линейно зависящей от скорости потока. Датчик работает только при условии, что в воздушном потоке возникает турбулентность. Турбулентность в свою очередь возникает только при достаточной скорости потока воздуха. Но при слишком высокой скорости потока могут возникать паразитные пульсации давления. Поэтому, некоторые датчики данного типа оснащены дополнительным входом для изменения чувствительности измерительного элемента, что необходимо при малой скорости потока воздуха через воздухомер, например, при работе двигателя в режиме холостого хода. Первые вихревые датчики использовали ультразвуковой передатчик и ультразвуковой приемник. Затем появились датчики, использующие метод измерения пульсаций давления по краям кромок, где образуются завихрения воздушного потока. В современных вихревых датчиках расхода воздуха, вместо измерения давления пульсаций используется тонкая нагретая нить, по пульсациям температуры которой и подсчитываются вихри Кармана.

Датчик объёмного расхода воздуха, с механическим измерительным потенциометром.


Датчик объёмного расхода воздуха потенциометрического типа производства BOSCH.
Датчики объёмного расхода воздуха работающие по принципу смещения ползунка потенциометра при помощи измерительной лопасти обладают низкой надёжностью, так как их конструкция включает подвижные механические элементы. Лопасть такого датчика подпружинена и размещена в потоке расходуемого двигателем воздуха так, что с увеличением потока воздуха лопасть смещается пропорционально потоку. Поток расходуемого двигателем воздуха имеет пульсирующий характер, и для уменьшения эффекта пульсаций измерительной лопасти синхронно пульсациям воздушного потока, лопасть датчика соединена с демпфером. С измерительной лопастью механически связан ползунок потенциометра, который за счёт этого смещается на величину, пропорциональную величине потока воздуха. Мерой объёма протекающего через датчик воздуха является выходное напряжение этого измерительного потенциометра. Измерительный потенциометр датчика объёмного расхода воздуха выполнен на керамической подложке. На подложку нанесены резисторы делителя напряжения, выводы которых размещены в ряд и покрыты контактным резистивным слоем. Ползунок потенциометра прижат к контактному резистивному слою, благодаря чему напряжение на ползунке равно напряжению в точке контакта с резистивным слоем.

Потенциометр датчика объёмного расхода воздуха производства BOSCH.
При каждом изменении положения лопасти, ползунок перемещается по контактному резистивному слою, скользя по нему. Такие перемещения ползунка постепенно истирают контактный резистивный слой, что с течением времени приводит к возникновению “потертости” измерительного потенциометра. При попадании ползунка в зону “потертости”, где контактный резистивный слой изношен вплоть до керамической подложки, электрический контакт между ползунком и резистивным слоем ухудшается, вследствие чего выходное напряжение потенциометра уже не соответствует положению подвижной лопасти расходомера – то есть, выходное напряжение датчика не соответствует величине расходуемого двигателем воздуха. Типичной неисправностью датчиков объёмного расхода воздуха работающих по принципу смещения ползунка потенциометра, является механический износ резистивного слоя. Так же часто встречается подклинивание лопасти датчика. Причинами подклинивания лопасти могут быть износ опор лопасти, деформация (искривление) лопасти из-за сильных хлопков во впускном коллекторе или из-за загрязнения воздушных каналов датчика. Методика диагностирования датчика объёмного расхода воздуха работающего по принципу смещения ползунка потенциометра аналогична методике диагностирования потенциометрического датчика положения дроссельной заслонки (или любого другого потенциометрического датчика положения).

Датчик массового расхода воздуха Mass Air Flow Sensor (MAF Sensor)

Измерительным элементом датчика массового расхода воздуха является разогретый до определённой заданной температуры проволочный или плёночный элемент. Протекающий поток воздуха охлаждает этот элемент, но электрическая схема (обычно, встроенная в расходомер) управляет мощностью его подогрева и разогревает измерительный элемент до его прежней температуры. Чем больший поток воздуха проходит через расходомер, тем большая требуется мощность подогрева для поддержания заданной температуры измерительного элемента. Таким образом, мощность подогрева измерительного элемента расходомера является мерой величины протекающего через датчик потока воздуха. Величина тока подогрева измерительного элемента преобразуется в выходной сигнал датчика – в большинстве случаев в аналоговое напряжение, в некоторых типах расходомеров в прямоугольное напряжение с изменяющейся частотой.

Датчик массового расхода воздуха BOSCH HFM5

Существует несколько конструкций датчиков массового расхода воздуха, но в последние годы большое распространение получил датчик массового расхода воздуха HFM 5 производства BOSCH.

Датчик массового расхода воздуха BOSCH HFM5.
Выходной сигнал датчика массового расхода воздуха BOSCH HFM5 представляет собой напряжение постоянного тока, изменяющееся в диапазоне 0…5V. Напряжение выходного сигнала датчика зависит от величины и направления проходящего через датчик потока воздуха. При нулевом расходе воздуха (двигатель остановлен, зажигание включено) выходное напряжение датчика массового расхода воздуха равно 1,00V. Когда двигатель работает, через датчик протекает воздух, и чем больше поток воздуха, тем выше значение выходного напряжения датчика. На определённых режимах работы двигателя могут возникать кратковременные обратные потоки воздуха – когда воздух движется по направлению от впускного коллектора двигателя к воздушному фильтру. Датчик массового расхода воздуха BOSCH HFM5 способен регистрировать обратные потоки воздуха, при этом его выходное напряжение снижается до значений меньших 1,00 V пропорционально величине обратного потока. Если сигнал от датчика массового расхода воздуха имеет отклонения от нормы, работа двигателя существенно ухудшается – повышается расход топлива, уменьшается “приёмистость” двигателя, на устоявшихся режимах работа двигателя становится нестабильной, появляется затруднённый холодный пуск двигателя. Отклонения параметров выходного сигнала могут быть связанны с “ухудшением” характеристик датчика массового расхода воздуха, подсосом “неучтенного” воздуха во впускной тракт, нестабильностью питающего напряжения датчика. В случае попадания на измерительный элемент датчика загрязнений, снижается скорость реакции датчика на изменения величины воздушного потока, а так же снижается точность измерения, что, в итоге, приводит к приготовлению топливовоздушной смеси с неправильным составом. Интенсивное отложение загрязнений на чувствительном элементе датчика может возникнуть вследствие несвоевременной замены воздушного фильтра. Иногда наблюдаются повреждения датчика, когда выходной сигнал постоянно находится в пределах 1,00V и при увеличении потока воздуха не изменяется. Двигатель при этом нормально запускается, но сразу глохнет. В большинстве случаев блок управления двигателем может определить только полностью неисправный расходомер. “Ухудшение” характеристик датчика определяются блоком управления в редких случаях.

Виды ДМРВ их конструктивные особенности и принцип работы

Наибольшее распространение получили три вида волюметров:

  • Проволочные или нитевые.
  • Пленочные.
  • Объемные.

В первых двух принцип работы построен на получении сведений о массе воздушного потока путем измерения его температуры. В последних может быть задействовано два варианта учета:

  1. Путем изменения положения ползунка, приводимого в действие специальной лопастью, на которую воздействует воздушный поток, проходящий через прибор. Учитывая наличие трущихся механизмов, уровень надежности таких конструкций довольно низкий. Это стало основной причиной для отказа производителей авто от датчиков данного типа. Для ознакомления приведем упрощенный пример конструкции объемного расходомера.
    Устройство ДМРВ объемного типа
  2. Подсчетом вихрей Кармана. Они образуются в том случае, если ламинарный воздушный поток будет омывать препятствие, кромки которого достаточно острые. Частота срывающихся с них вихрей напрямую связана со скоростью потока воздуха, проходящего через устройство.
Конструкция вихревого датчика (широко используется производителем Mitsubishi Motors)

Обозначения:

  • А – датчик измерения давления, для фиксации прохождения вихря. То есть, частота давления и образования вихрей буде одна и та же, что дает возможность измерить расход воздушной смеси. На выходе при помощи АЦП аналоговый сигнал преобразовывается в цифровой, и передается в ЭБУ.
  • В – специальные трубки, формирующие воздушный поток, близкий по свойствам к ламинарному.
  • С – обводные воздуховоды.
  • D – колона с острыми кромками, на которых формируются вихри Кармана.
  • Е – отверстия, служащее для замера давления.
  • F – направление воздушного потока.

Объёмный

Наиболее простые расходомеры строились по принципу установки в сечении проходящего воздуха измерительной лопасти, на которую поток и оказывал давление. Под его действием лопасть поворачивалась вокруг своей оси, где устанавливался электрический потенциометр.

Оставалось лишь снять с него сигнал и подать его в ЭСУД для оцифровки и использования в расчётах. Устройство настолько же простое, насколько и неудобное в разработке, поскольку получить приемлемую характеристику зависимости сигнала от массового потока довольно затруднительно. К тому же надёжность невысока из-за наличия механически перемещающихся деталей.

Чуть сложнее для понимания устроен расходомер на принципе вихрей Кармана. Используется эффект возникновения циклических завихрений воздуха при проходе его через аэродинамически несовершенное препятствие.

Частота этих проявлений турбуленции почти линейно зависит от скорости потока, если правильно подобрать размеры и форму препятствия для нужного диапазона. А сигнал выдаёт установленный в зоне завихрений датчик воздушного давления.

В настоящее время объёмные датчики уже почти не используются, уступив своё место приборам термоанемометрического типа.

Проволочные датчики

Нитевой ДМРВ до недавнего времени был наиболее распространенным типом датчика, устанавливаемый на отечественных автомобилях модельного ряда ГАЗ и ВАЗ. Пример конструкции проволочного расходомера показан ниже.

Конструкция волюметра ИВКШ 407282.000

Обозначения:

  • А – Электронная плата.
  • В – Разъем для подключения ДМРВ к ЭБУ.
  • С – Регулировка CO.
  • D – Кожух расходомера.
  • Е – Кольцо.
  • F – Проволока из платины.
  • G – Резистор для термокомпенсации.
  • Н – Держатель для кольца.
  • I – Кожух электронной платы.

Принцип работы и пример функциональной схемы нитевого волюметра.

Разобравшись с конструкцией устройства, перейдем к принципу его работы, она основана на термоанемометрическом методе, при котором терморезистор (RT), нагреваемый проходящим через него током, помещают в воздушный поток. Под его воздействием изменяется теплоотдача, а соответственно, и сопротивление RT, что позволяет вычислить объемный расход воздушной смеси? используя уравнение Кинга:

I2*R=(K1+K2*Q)*(T1-T2) ,

где I – ток, проходящий через RT и нагревающий его до температуры Т1. При этом Т2 — температура окружающей среды, а К1 и К2 – неизменные коэффициенты.

Исходя из приведенной выше формулы, можно вывести величину объемного расхода воздушного потока:

Q = (1/К2)*(I2*RT/(T1 — T2) — K1)

Пример функциональной схемы с мостовым включением термоэлементов приведен ниже.

Типовая функциональная схема проволочного ДМРВ

Обозначения:

  • Q- измеряемый воздушный поток.
  • У – усилитель сигнала.
  • RT – проволочное термосопротивление, как правило изготавливается из платиновой или вольфрамовой нити, толщина которой находится в пределах 5,0-20,0 мкм.
  • RR – термокомпенсатор.
  • R1-R3 – обычные сопротивления.

Когда скорость потока близка к нулю, RT нагревается до определенной температуры проходящим через него током, что позволяет мосту удерживаться в равновесии. Как только поток воздушной смеси усиливается, терморезистор начинает охлаждаться, что приводит к изменению его внутреннего сопротивления, и, как следствие, нарушению равновесия в мостовой схеме. В результате этого процесса на выходе усилительного блока образуется ток, который частично проходит через термокомпенсатор, что приводит к выделению тепла и позволяет компенсировать его потерю от потока воздушной смеси и восстанавливает равновесие моста.

Описанный процесс позволяет рассчитать расход воздушной смеси, оперируя величиной тока, проходящего через мост. Чтобы сигнал воспринимался ЭБУ, он преобразовывается в цифровой или аналоговый формат. Первый позволяет определить расход по частоте выходного напряжения, второй – по его уровню.

У данной реализации есть существенный недостаток – высокая температурная погрешность, поэтому многие производители добавляют в конструкцию терморезистор аналогичный основному, но не подвергают его воздействую воздушного потока.

В процессе работы на проволочном терморезисторе могут накапливаться пылевые или грязевые наслоения, чтобы не допустить этого, данный элемент подвергается краткосрочному высокотемпературному нагреву. Он производится после отключения ДВС.

Пленочные воздухомеры

Пленочный ДМРВ работает по тому же принципу, что и нитевой. Основные отличия заключаются в конструктивном исполнении. В частности, вместо проволочного сопротивления из платиновой нити используется кремневый кристалл. Он покрыт несколькими слоями платинового напыления, каждый из которых играет определенную функциональную роль, а именно:

  • Температурного датчика.
  • Термосопротивления (как правило, их два).
  • Нагревательного (компенсационного) резистора.

Данный кристалл устанавливается в защитный кожух и помещается в специальный канал, через который проходит воздушная смесь. Геометрия канала выполнена таким образом, чтобы температурные измерения снимались не только с входного потока, а и отраженного. Благодаря созданным условиям достигается высокая скорость движения воздушной смеси, что не способствует отложению пыли или грязи на защитном корпусе кристалла.

Конструктивные особенности пленочного ДМРВ

Обозначения:

  • А – Корпус расходомера, в который вставляется измерительное приспособление (Е).
  • В – Контакты разъема, который подключается к ЭБУ.
  • С – Чувствительный элемент (кремневый кристалл с несколькими слоями напыления, помещенный в защитный кожух).
  • D – Электронный контролер, при помощи которого производится предварительная обработка сигналов.
  • Е – Корпус измерительного приспособления.
  • F – Канал, сконфигурированный таким образом, чтобы снимать тепловые показатели с отраженного и входного потока.
  • G – Измеряемый поток воздушной смеси.

Как уже упоминалось выше, принцип работы нитевых и пленочных датчиков аналогичны. То есть, первоначально производится нагрев чувствительного элемента до температуры. Поток воздушной смеси охлаждает термоэлемент, что делает возможным произвести расчет массы воздушной смеси, проходящей через датчик.

Как и в нитевых устройствах, исходящий сигнал может быть аналоговым или преобразовываться при помощи АЦП в цифровой формат.

Следует заметить, что погрешность нитевых волюметров порядка 1%, у пленочных аналогов данный параметр около 4%. Тем не менее, большинство производителей перешли на пленочные датчики. Это объясняется как более низкой стоимостью последних, так и расширенным функционалом ЭБУ, обрабатывающих информацию с данных устройств. Эти факторы отодвинули на второй план точность приборов и их быстродействие.

Следует отметить, что благодаря развитию технологии изготовления флэш-микроконтроллеров, а также внедрению новых решений удалось существенно понизить погрешность увеличить быстродействие пленочных конструкций.

Можно ли обойтись без него?

Отказ ДМРВ приводит к срабатыванию “чека”, но двигатель при этом будет работать и дальше. Правда, в зависимости от новизны прошивки ЭБУ, “аварийная” программа, не увидев сигнала, может поднять обороты холостого хода примерно до 1 500 об/мин. На относительно новых версиях программного обеспечения неисправность датчика приводит лишь к повышению расхода топлива или падению динамики. В любом случае, ошибка датчика массового расхода воздуха является важной причиной для того, чтобы проверить его, хотя бы измерив напряжение.

При некорректной работе ДМРВ электроника может начать переобогащать рабочую смесь

Игнорировать неисправность не стоит, поскольку даже на относительно простых автомобилях (переднеприводная линейка Lada первых поколений) отказ ДМРВ грозит заметным перерасходом бензина либо ослаблением выходных характеристик мотора. Именно поэтому ответ на популярный вопрос «Можно ли вообще обойтись без ДМРВ, если он заложен в конструкцию машины?» однозначен и звучит так: нет, нельзя.

Промывать или нет?

Многие механики с многолетним стажем и рядовые владельцы автомобилей уверены в том, что «уставший» ДМРВ можно оживить элементарной промывкой – то есть вынуть его из корпуса и хорошенько «пролить» каким-нибудь «карбклинером» или спиртом примерно так же, как 20-30 лет назад это делали с жиклёрами карбюратора. В действительности же существуют специализированные составы для очистки датчиков, которые не имеют ничего общего с растворителями отложений, использующимися для промывки карбюраторов. Поэтому и цена у таких «узкозаточенных» очистителей ДМРВ совсем другая — и, как нетрудно предположить, более высокая. К тому же производители подобных жидкостей прямо указывают, что они не сделают чудес и не превратят “полудохлый” датчик в совершенно новый, а предназначены для профилактической промывки исправных ДМРВ — снять загрязнения, связанные с пылью и масляным туманом, попавшим во впускной тракт из системы вентиляции картера.

Обратите внимание: для промывки используется специализированный состав именно для чистки ДМРВ, а не универсальный очиститель карбюратора или топливной системы

Практический опыт применения подобных “чудо-средств” показывает, что они действительно могут немного снизить показания еще исправного датчика, а вот вышедшему за 1,05 В подобные манипуляции уже будут что мёртвому припарки…

Главное – не повредить снятый датчик, который боится даже пыли, не говоря уже о механическом воздействии

Многие водители по неопытности сами губят ещё живые датчики при промывке. Чувствительные элементы нельзя трогать руками или протирать ветошью, да и сильный напор жидкости кроме вреда ничего не принесёт. Поэтому к чистке ДМРВ в гаражных условиях нужно относиться с большой осторожностью и помнить:если датчик уже «умер», то это неопасно иему уже не поможет, но, даже если он еще вполне исправен, эта процедура может и не принести заметного результата.

Как диагностировать неисправность?

Кроме косвенных признаков, о которых мы упоминали выше, существует вполне объективный параметр, указывающий на состояние датчика и его ресурс — это рабочее напряжение при включенном зажигании. Изучимего на примере «вазовского» датчика как одного из самых распространённых.

Схема подключения ДМРВ на двигателе ВАЗ

Подключив мультиметр в режиме измерения постоянного напряжения и включив зажигание, можно снять показания по выходному напряжению ДМРВ. Для новой или “эталонной” детали он составляет 0,996 В.

Такое напряжение указывает на то, что датчик работает как новый
Один из вариантов измерения напряжения – прямо через разъем подключения датчика

Дальше параметры оцениваются так:

1,010-1,019 В — хорошее состояние, о замене пока не нужно думать
1,020-1,029 В – датчик работоспособен, это примерно половина остаточного ресурса
1,030-1,039 В — еще исправен, но ресурс подходит к концу
1,040-1,049 В – ДМРВ на грани выхода из строя, скоро потребует замены
1,050 В и выше — расходомер требует немедленной замены

При параметре 1,016 В (первое фото) датчик в хорошем состоянии, а вот 1,035 В – уже повод задуматься о покупке нового​

Такой параметр датчик выдает на грани исправности, но нужно точно убедиться в том, что данные соответствуют действительности, а не связаны с погрешностью мультиметра

Нужно учитывать, что многие тестеры завышают показания, поэтому существует риск «приговорить» вполне исправный датчик. К тому же его параметры во многом зависят от чистоты «масс» в цепи.

Плохой обжим проводов или сгнившая «коса» могут повлиять на корректность работы как ДРМВ, так и ДАД, что особенно характерно для моторов старых автомобилей​

Лучше всего до покупки не самого дешевого датчика установить сначала заведомо исправный «бэушный», одолжив его для проверки на время у коллеги по работе, соседа по стоянке, знакомого по форуму с такой же машиной и т.д. Также стоит больше верить показаниям диагностического сканера, подключенного к разъему OBD-2, чем дешевому мультиметру.

Признаки неисправности

Влияние неполадок в работе ДМРВ на двигатель сильно зависит от конкретного автомобиля. Некоторые даже невозможно запустить при отказе датчика расхода, хотя большинство просто ухудшает свои характеристики и задирает обороты холостого хода при уходе на байпасную подпрограмму и высвечивании лампочки Check Engine.

В общем случае нарушается смесеобразование. ЭСУД, обманутая неверными показаниями расхода воздуха, выдаёт неадекватное количество топлива, отчего работа двигателя существенно изменяется:

  • обеднение или обогащение смеси ведёт к хаотичным провалам в тяге мотора;
  • холостые обороты скачут, пока не установятся на повышенном в два-три раза уровне после исключения МАФ из рассмотрения контроллером;
  • возрастает расход топлива и ухудшается динамика автомобиля;
  • высвечивается контрольная лампочка и появляется возможность считать код ошибки.

Начальную диагностику МАФ можно провести при помощи сканера, который способен расшифровывать ошибки в памяти ЭСУД.

Код ошибки ДМРВ

О наличии неисправности в работе ДМРВ могут сообщать такие ошибки:

  1. Р0100 — повреждение электрической цепи подключения датчика. Для устранения поломки нужно проверить проводку на целостность, поскольку возможно случайное отсоединение разъёма либо повреждение электроконтактов.
  2. Р0102 — на блок управления автомобиля начал поступать низкий сигнал, который зафиксирован на входе электролинии ДМРВ. Чтобы устранить причину поломки, необходимо проверить электропроводку и изоляционный слой кабеля, возможно окисление контактов разъёма проводки (т. н. фишки).
  3. Р0103 — критически высокий сигнал, зафиксированный на входе электролинии ДМРВ. Если причина неисправности заключается не в проводке, то потребуется визуальный осмотр и очистка расходомера или придётся его заменять на новый

Причины выхода из строя ДМРВ

Датчик MAF (расходомер воздуха) измеряет объем воздуха через воздействие воздушного потока на чувствительный элемент, представляющий собой в ряде случаев пленку, а в других – нить, которые изготавливаются из платины. На рабочий элемент подается определенное напряжение, в результате чего происходит его нагрев. Поток воздуха охлаждает элемент. Измеряя скорость падения температуры, компьютер высчитывает, какой объем воздуха прошел через датчик за расчетную единицу времени. На основании полученных данных подается сигнал системе впрыска о необходимом количестве топлива для создания качественной горючей смеси.

Слабым местом узла является именно нагревательный элемент. Со временем на нем осаждаются мельчайшие частицы пыли, образуя налет, нарушающий нормальное охлаждение. Расчеты объема проходящего через датчик воздуха не соответствуют реальным значениям, что вызывает сбои в системе впрыска. Компьютер льет топливо, основываясь на ложных сигналах, что отражается на общей эффективности работы двигателя.

В некоторых случаях характерные признаки неисправности ДМРВ могут появляться не в результате поломки самого датчика, а вследствие подсоса воздуха в обход него. Например, при нарушении герметичности воздуховода. Таким образом, корректное функционирование системы подачи воздуха становится невозможным. Обычно механическое повреждение легко обнаруживается путем демонтажа и внимательного осмотра патрубка. Особенно часто его целостность нарушается в районе соединительных элементов и на изгибах. В данном случае проблема решается путем замены либо восстановлением поврежденной детали.

Как проверить датчик массового расхода воздуха

Устройство это достаточно сложное и дорогое, что потребует внимательности при его отбраковке. Лучше пользоваться инструментальными методами, хотя ситуации могут быть разными.

Способ 1 — внешний осмотр

Расположение МАФ по пути воздушного потока уже за фильтром должно предохранять элементы датчика от механических повреждений летящими твёрдыми частицами или грязью.

Но фильтр не идеален, он может быть разорван или установлен с ошибками, поэтому состояние датчика можно сначала оценить визуально.

На его чувствительных поверхностях не должно быть механических поломок или видимых глазом загрязнений. В таких случаях прибор уже не сможет выдавать правильные показания и потребуется вмешательства для ремонта.

Способ 2 — отключение питания

В непонятных случаях, когда ЭСУД не может однозначно забраковать датчик с переходом на обходной режим, такое действие можно выполнить самостоятельно, просто заглушив двигатель и сняв электрический разъём с ДМРВ.

Если работа двигателя станет стабильней, а все её изменения останутся лишь типичными для программного обхода датчика, например, увеличение холостых оборотов, значит подозрения можно считать подтвердившимися.

Способ 3 — проверка мультиметром

Все автомобили разные, поэтому единого способа проверки МАФ вольтметром мультиметра не существует, но на примере самых распространённых датчиков ВАЗ можно показать как это делается.

Вольтметр должен обладать подходящей точностью, то есть быть цифровым и иметь не менее 4-х разрядов. Подключать его надо между приборной «массой», которая есть на разъёме ДМРВ и сигнальным проводом с помощью игольчатых щупов.

Напряжение нового датчика после включения зажигания совсем немного не дотягивает до 1 Вольта, у рабочего ДМРВ (системы Бош, встречается Сименс, там другие показатели и методики) оно примерно в диапазоне до 1,04 вольта и должно резко увеличиваться при обдуве, то есть запуске и наборе оборотов.

Теоретически можно и прозванить элементы датчика омметром, но это уже занятие для хорошо знающих материальную часть профессионалов.

Способ 4 — проверка сканером Вася Диагност

Если предпосылок для высвечивания кода ошибки ещё нет, но подозрения на датчик сформировались, то можно посмотреть его показания через диагностический сканер на базе компьютера, например VCDS, что в русской адаптации называется Вася Диагност.

На экран выводятся каналы, связанные с текущим расходом воздуха (211, 212, 213). Переводя двигатель в различные режимы можно увидеть, насколько показания МАФ соответствуют положенным.

Бывает, что отклонения возникают только при каком-то определённом обдуве, и ошибка появиться в виде кода не успевает. Сканер позволит рассмотреть это гораздо подробней.

Способ №1 — отключение расходомера воздуха

Способ состоит в отключении датчика от топливной системы машины и проверки работоспособности системы без него. Для этого нужно отключить прибор от разъема и завести мотор. Без ДМРВ контроллер получает сигнал переходить в аварийный режим работы. Он готовит воздушно-топливную смесь лишь исходя из положения дроссельной заслонки. Если машина движется «резвее», не глохнет, значит, прибор неисправен и требуется его ремонт или замена.

Способ 5 — замена на исправный

ДМРВ относится к тем датчикам, замена которых сложностей не представляет, он всегда на виду. Поэтому часто проще всего использовать подменный датчик, и если работа двигателя по объективным показателям или данным сканера придёт в норму, то останется только приобрести новый датчик.

Обычно подмена всех подобных приборов у диагностов имеется в наличии. Надо только проследить, чтобы подменный прибор был в точности такой, как положено данному двигателю по спецификации, одного внешнего вида мало, надо сверять каталожные номера.

Способ №6 — проверка с помощью сканера

Методика проверки:

  1. Установить на телефон (смартфон), планшет или переносной компьютер программу для диагностики (например, Torque Pro, Opendiag, BMWhat, OBD Авто Доктор).
  2. Подключить с помощью специального кабеля, Bluetooth-канала мобильного устройства либо ноутбук к диагностическому разъёму, расположенному на электронном блоке управления автомобиля.
  3. Запустить на телефоне (смартфоне) или компьютере утилиту для диагностики.
  4. Дождаться окончания сканирования программой всех узлов транспортного средства. В результате утилита проверит исправность каждого агрегата автомобиля.
  5. Расшифровать коды ошибок, которые покажет программа после завершения диагностики.

Для выполнения этого метода используются тестеры:

  • K-Line 409/1;
  • Сканматик;
  • ELM (ЕЛМ) 327;
  • OP-COM.

Замена ДМРВ

Для замены датчика своими руками, нужно приготовить фигурную отвертку и ключ на «10».

Процедура замены состоит из следующих шагов:

  1. Сначала нужно выключить зажигание, открыть капот.
  2. Затем нужно отсоединить минусовую клемму на аккумуляторе.
  3. На следующем этапе нужно ослабить хомут, с помощью которого гофра присоединяется к ДМРВ.
  4. Далее снимаем гофру с патрубка.
  5. Затем нужно отогнуть гребенку и отсоединить разъем датчика.

    Отсоединение разъема датчика

  6. Затем, воспользовавшись ключом на «10», нужно отвернуть крепежные болты датчика к корпусу воздухофильтра.
  7. Теперь можно снять ДМРВ.
  8. Установка датчика своими руками осуществляется в обратной последовательности.

Таким образом, если машина глохнет, имеет все признаки поломки ДМРВ, то перед тем, как начинать его ремонт, следует проверить уровень его сигнала, он не должен быть низким, выполнить полную диагностику машины и отремонтировать все неисправные узлы и детали.

Важно регулярно проходить техосмотр авто и выполнять вовремя техническое обслуживание, тогда детали и узлы будут служить дольше.

Как почистить датчик массового расхода воздуха

Чувствительный элемент датчика может со временем покрываться неорганическими микрочастицами, пленкой, образующейся от масляного угара, что ухудшает корректные показания воздуха. Программа блока управления до определенного момента корректирует поступающие с искажениями сигналы датчика, но на критической границе допустимого диапазона включает аварийную лампочку, сообщая об ошибке в топливной системе. Кроме этого, появляются симптомы неисправности ДМРВ в виде провалов, обрастания электродов свечей сажей.

Завод не рекомендует чистить ДМРВ разного рода жидкостями, особенно растворителями и очистителями карбюраторов. Почистить датчик можно распыляя на измерительный элемент спирт. Чистка датчика спиртом не нанесет вред. Прежде чем поворачивать ключ зажигания убедиться в чистоте воздушного тракта датчика и, если присутствуют инородные предметы удалить их пинцетом или любым, подходящим для этой цели инструментом.

Что нельзя делать

Нельзя продувать датчик воздухом из компрессора. Можно оборвать проводники от кристалла к плате. Они очень тонкие (ок. 0,01мм) и мягкие. Закреплены гелеобразным компаундом, который растворяется лёгкими растворителями, и деформируется сильным потоком воздуха. Т. е. дунув компрессором, можно компаунд сдуть и оторвать проводники.

Для промывки нельзя использовать кетоны и эфиры. По трём причинам:

  1. Растворяют компаунд.
  2. При высыхании очень сильно охлаждают кристалл. Он может лопнуть, треснуть.
  3. Растворяют «маску» на кристалле.

Нельзя:

  • лазить в измерительный элемент спичками, зубочистками, ватными палочками и пр.;
  • промывать всякими средствами типа Wynn’s;
  • не использовать очистители карбюратора «Абро», «Hi-Gear» и т. п.;
  • не использовать аэрозоли с ацетоном, этиловым эфиром.

Использование очистителя ДМРВ

Для промывки датчика массового расхода воздуха лучше использовать специальный аэрозольный очиститель ДМРВ, например, LIQUI MOLY (арт. 8044) или KERRY (арт. KR9091).

Для этого необходимо снять датчик, по-возможности открутить измерительный элемент и распылить на него очиститель. В зависимости от загрязнений, повторить процедуру несколько раз. Дать высохнуть.

Ремонт датчика расхода воздуха своими руками

При неисправности ДМРВ (любого типа) его следует заменить новым. Ремонту ДМРВ не подлежит из-за сложной его структуры, выполненной на микроскопической основе. Своими руками починить ДМРВ или почистить его агрессивными жидкостями производитель не рекомендует. Разобрать датчик также невозможно, так как он не разборный.

Как проверить ДМРВ частотного типа

Датчик с частотной характеристикой расположен после воздушного фильтра. ДМРВ с частотной характеристикой цифрового выходного сигнала косвенно проверить возможно сканером. При включенном зажигании параметр частоты должен быть в пределах 915-925 мГц и на холостом ходу частота изменится до 315-330 мГц. При иных показаниях частоты утверждать о неисправности ДМРВ нельзя и в этом случае эффективнее произвести подмену заведомо исправным датчиком. Понять причины неисправности ДМРВ при соблюдении профилактических мер достаточно сложно, но если неисправность появилась, то устранить ее можно подменным устройством.

Как продлить жизнь ДМРВ

  • Своевременная замена воздушного фильтра.
  • Корпус воздушного фильтра должен быть всегда чистым.
  • Не использовать спортивные (нулевого сопротивления) воздушные фильтры.
  • Ограничить использование пропитанных воздушных фильтров.

Чего опасаться?

Нет ничего опаснее для хрупкого сенсора, чем грязь. Под капотом это обычно пыль или масло. Первая попадает внутрь с воздухом, второе – из-за особенностей работы системы картерных газов. Патрубок рециркуляции вставлен во впускную систему, и внутрь попадает масло, которое оседает на сенсоре.

Что происходит в этот момент?

  1. В основе проволочного сенсора – нить из платины или вольфрама. При работе она нагревается, и расход воздуха измеряется тем, как быстро она остывает в потоке после. Сам принцип его работы – уже система самоочистки. Пыль и грязь просто сгорают и осыпаются с нити при тех высоких температурах, на которых она работает. Масло же – совсем другая история. При нагревании масляной взвеси, она расплавляется, оставляя карбоновые отложения. Из-за них нить охлаждается медленнее, и сначала показывает менее точные данные, а потом в конце концов перегревается и выходит из строя. Но даже если этого не произошло, толщина нити просто уменьшается со временем.
  2. Пленочный сенсор менее хрупок, но с ним тоже бывают проблемы. Его чувствительный элемент – кремний с несколькими слоями платиновых пленок. Такие датчики ломаются от грязи, осевшей на термоэлементе.

Важно понимать: и при самом бережном уходе сенсор однажды сломается, и это нормально. Но бережная чистка датчика МАФ продлит срок его жизни.

Как не надо?

  1. Продувать воздухом не надо никогда. Ни чистить, ни сушить после чистки спецсредствами пленочный расходомер таким методом нельзя. Сенсоры очень хрупки, термоэлемент может повредиться, если оторвутся кристаллы, его придется менять.
  2. Чистить карбоклинером или любыми составами, в которых содержится растворитель. Детали сенсора соединены между собой гелеобразным компаундом, и механически в нашем случае это обычный клей. Что делает растворитель с клеем? Правильно.
  3. Протирать спиртом. Есть целый ряд способов, которым спирт может навредить чувствительному сенсору. Это образование налета, окисление, это просто его свойства. Спирт испаряется, поверхность под ним охлаждается – это физика. Такие перепады температуры деформируют пленку, между слоями образуются зазоры, куда попадает воздух. Сенсор выходит из строя.
  4. Механическое протирание поверхности датчика, даже ватой, может привести к необратимым повреждениям.

Как правильно?

Для чистки датчика МАФ подходят только средства, не содержащие в своей формуле агрессивных веществ – спирта и растворителей. Будьте внимательны к тому, что попадает внутрь вашего автомобиля. На рынке хватает специализированных средств, и они не так дороги, во всяком случае, гораздо дешевле нового датчика.

Например, аэрозольные очистители подходят для реанимации работоспособности всех датчиков ДМВР и холостого хода. Подходят для пленочных и нитевых сенсоров. Состав средства безопасен для указанных элементов. Кроме того, может использоваться для очистки резины, проводов, всех видов пластиков.

Метод использования доступен любому автовладельцу. Для их применения достаточно снять сенсор, проверить температуру – он не должен быть горячим. Распылить очиститель на все компоненты, покрытые налетом, и дать детали высохнуть. Помните о первом пункте прошлого абзаца: продувать нельзя, сенсор должен высохнуть естественным путем на открытом воздухе. После установки сенсора запустите двигатель на холостом ходу на 3-5 минут.

Советы

Датчик прослужит дольше, если:
• своевременно менять воздушный фильтр, следить за состоянием патрубков и хомутов, не допускать в них проникновение пыли;
• ни в коем случае не снимать воздушный фильтр при рабочем двигателе;
• избегать попадания эфиросодержащего спрея «быстрый запуск» на ДМРВ.

Источники

  • https://www.asutpp.ru/datchik-rasxoda-vozduxa.html
  • https://www.kolesa.ru/article/chto-takoe-dmrv-pochemu-on-vazhen-i-kak-diagnostirovat-ego-neispravnost
  • https://autoburum.com/blog/394-datchik-massovogo-raskhoda-vozduha-princip-raboty-kontrol-neispravnosti
  • https://labavto.com/elektronika/sensor/harakteristika-datchika-massovogo-rashoda-vozduha/
  • http://auto-master.su/42-ustrojstvo-princip-dejstviya-diagnostika-datchikov-massovogo-rasxoda-vozduxa-mass-air-flow-sensor-maf-sensor.html
  • https://AutoVogdenie.ru/kak-proverit-datchik-maf.html
  • https://avtozam.com/elektronika/sensor/dmrv-priznak-neispravnosti/
  • https://autoabra.com/mech/priznaki-neispravnosti-dmrv/
  • https://diagnozbibike.ru/datchik-dmrv/
  • https://elm3.ru/wiki/datchik-massovogo-rashoda-vozduha
  • https://FB.ru/article/423051/datchik-maf-printsip-rabotyi-ustroystvo-datchika-harakteristika-i-pokazaniya

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Все об устройстве автомобилей, советы, помощь
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: