Гидромеханическая коробка передач: Что это тако

Зачем вообще автомобилю нужна коробка передач?

Из-за особенностей работы ДВС. При низких оборотах ему не всегда хватает сил (крутящего момента) вращать колёса и двигать автомобиль. Чтобы помочь мотору, нужно дать ему возмож­ность при маленькой скорости движения машины крутиться быстрее — для этого двигатель соединяют с колёсами через передачу.

Простейшая передача — это две шестерни разного размера, сцеплен­ные зубьями. Пред­ставьте, что у одной зубьев в три раза больше, чем у другой. Тогда за один оборот большой шестерни малая сделает уже три оборота. И напротив, соединив двигатель с маленькой шестернёй, а колёса — с большой, мы заставим их крутиться в три раза медленнее коленвала. Ещё один плюс: крутящий момент, вращающий колёса, тоже будет в три раза выше крутящего момента двигателя.

Но когда скорость автомобиля возрастёт вдвое, обороты мотора увеличатся уже в шесть раз. А он не может вращаться слишком быстро — топливо просто не будет успевать сгорать. Поэтому по мере разгона двигателю потребуется другая пара шестерён — с менее кардинальной разницей в количестве зубьев (её называют пере­даточным отношением). В совре­менных легковых автомобилях 5–6 разных передач (или ступеней), а у некоторых и девять. А коробка передач — это агрегат, в котором все они собраны вместе.

Назначение и устройство гидромеханической трансмиссии легкового автомобиля

Неотъемлемыми элементами конструкции классического устройства автомобиля служат сцепление с КПП. Но меняющийся образ жизни диктует создание оптимального комфорта для водителей. Это ведет к изменению стандартных узлов автомашины. Их все чаще заменяет комбинированная гидромеханическая трансмиссия, в состав которой входит как механическая, так и гидравлическая трансмиссии. В устройствах этого типа передаточное число, крутящий момент меняются постепенно и плавно.

Трансмиссия

То есть коробка передач — это просто набор шестерён?

И да, и нет. В реальности всё сложнее. Помимо самих передач нужны ещё механизмы, которые позволяют эти передачи менять. Да и шестерни — лишь один из видов передач. За сто с лишним лет существо­вания автомобилей придумано множество механизмов — от простейших шкивов, между которыми пере­брасывался приводной ремень (подобно тому, как это делается с цепью на велосипедах), до совсем экзотических конструкций. И сегодня в автомобилях используют четыре типа коробок передач: механическую, гидро­механическую, роботизи­рованную и вариатор. Каждая работает по-своему.

Механическая коробка передач

Устройство механической коробки передач ближе всего к примеру, который мы рас­смотрели в самом начале. Передачи в ней — это как раз пары шестерён: ведущая плюс ведомая, с разными пере­даточными отношениями. Все ведущие шестерни насажены на входной вал от двигателя, а ведомые — на выходной, передающий крутящий момент колёсам. Но первые жёстко соединены с валом, а вторые могут свободно вращаться независимо от вала.

Если ведомую шестерню (на рисунке они внизу) любой из передач всё-таки зафикси­ровать на валу — жёстко с ним связать, то двигатель будет крутить колёса с соответ­ствующим передаточным отношением.

Для фиксации шестерён на выходном валу в коробке передач применяются зубчатые муфты, которые могут двигаться вдоль его оси. Водитель, выжимая сцепление, отсоединяет входной вал (а с ним и ведомые шестерни) от двигателя. Потом водитель рычагом включает передачу — сдвигая муфту к нужной шестерне. Между шестернёй и муфтой есть ещё фрикци­онное кольцо — синхрони­затор. Движение муфты заставляет его прижиматься к шестерне и тормозить её или разгонять до скорости вращения вала. Когда скорости вращения шестерни и муфты выравнива­ются, муфта своими зубцами соединяется с шестернёй и передача включается. Водителю остаётся только аккуратно отпустить сцепление, снова подключив коробку передач к мотору.

 

Как устроен задний ход? Чтобы автомобиль поехал назад, выходному валу коробки нужно начать вращаться в обратную сторону. Для этого шестерни на входном и выходном валах просто соединяются ещё одной, промежуточной. А поскольку задний ход мы включаем на неподвижном авто­мобиле (когда валы в коробке не крутятся), заднему ходу не требуются синхронизатор и муфта. Обычно двигается вдоль своей оси сама промежуточная шестерня, цепляясь зубцами за остальные.

Поначалу точно так же, кстати, работали все передачи на первых механи­ческих коробках в автомобилях — но на ходу включить их было намного труднее синхрони­зированных, повышался износ зубьев. Так появились те коробки передач, которыми мы привыкли пользоваться сегодня.

Роботизированная коробка передач

Со временем инженеры захотели облегчить водителям жизнь, переложив работу со сцеплением и пере­ключением передач на автоматику. Так появились роботи­зированные коробки.

Самый простой вариант «робота» — это обычная механическая коробка, в которой муфты пере­мещаются с помощью серво­приводов по команде электроники. Другие серво­приводы в нужный момент выжимают и отпускают сцепление. Но на практике в простейших «роботах» электроника пере­ключает передачи как водитель-новичок — грубо и медленно.

 

Куда лучше работают преселективные роботизиро­ванные коробки. В них передачи включаются так же — муфтами с синхрони­заторами, а крутящий момент пере­даётся шестернями от входного вала к выходному. Только в преселективной коробке использу­ется четыре вала. На одной паре стоят шестерни чётных передач, на второй – нечётных. Сцеплений тоже два, каждое для своего входного вала. Если совсем грубо, то пресе­лективная роботизи­рованная коробка — это две обычные коробки, совмещённые в одной.

Как это работает? Пока автомобиль едет, например, на третьей передаче, автоматика заранее (отсюда и название «преселективная») включает четвёртую передачу — если машина разгоняется, или вторую — если автомобиль замед­ляется. При этом сцепление, которое связано с «чётным» валом, разомкнуто, и связи с двигателем у этой части коробки нет. Переход с третьей на четвёртую передачу происходит в момент, когда отключа­ется одно сцепление и одно­временно включается второе. После чего на недействующем теперь «нечётном» ведомом валу запускается пятая (или первая) ступень, и в нужный момент рокировка сцеплений происходит вновь. Смыкать и размыкать сцепления электроника умеет быстро и почти незаметно для водителя, поэтому и смена передач здесь молниеносная и практически без разрыва тяги.

Вот почему такие коробки стали часто использоваться на спортивных автомобилях.

Гидромеханическая коробка передач

Коробка, которую в просторечии называют «автомат», потому что она тоже переключает ступени без участия водителя. Но основа её конструкции — не пары шестерён, а планетарный редуктор, который устроен сложнее (смотрите рисунок). В нём есть центральная (солнечная) шестерня, коронная шестерня — кольцо с зубцами на внутренней поверх­ности, и несколько сател­литов — маленьких шестерён, которые сцеплены одно­временно с солнцем и с короной. Оси вращения сателлитов соединены между собой ещё одной деталью — водилом. При этом солнечная, коронная шестерня и водило могут вращаться вокруг одной воображаемой оси.

Уникальность планетарного редуктора в том, что его пере­даточное отношение не фиксированное, как у простейшей передачи с двумя шестерёнками, а может меняться — в зависи­мости от того, как вращаются его части. Когда коронная шестерня неподвижна, водило крутится в несколько раз медленнее солнечной. Но если и корона начнёт вращаться в ту же сторону, пере­даточное отношение от солнца к водилу будет уменьшаться — и когда корона «догонит» остальных, оно станет равным единице. А дальше с ростом её скорости передача станет повышающей, то есть выходной вал начнёт крутиться быстрее входного!

И если передавать вращение от входного вала коробки передач к выходному через несколько таких «планетарок», соединяя разные их части в разных комби­нациях — и, за счёт этого, заставляя их крутиться с разными скоро­стями, то получится коробка с несколькими передачами. Можно даже заставить выходной вал вертеться в противо­положную сторону — для заднего хода. Причём для 6-сту­пенчатого «автомата» достаточно всего трёх планетарных редукторов, а с четырьмя уже можно сделать 10 передач!

 

Однако в «автомате» намного сложнее, чем в «механике», переключать передачи — поэтому этим и занимается автоматика, а не человек. Для каждой передачи есть своя комбинация деталей, которые нужно соединить между собой. Или с корпусом коробки, остановив их вращение. Для этого в автомати­ческих коробках передач используются много­дисковые фрикционные муфты, которые работают по тому же принципу, что и сцепление: когда «бутер­брод» из дисков сжимается, те перестают проскаль­зывать друг относительно друга – и скорости вращения деталей, с которыми диски соединены, выравниваются. Муфты в традиционном «автомате» сжимаются под давлением масла — а это давление создаёт насос с приводом от двигателя. Когда и к какой муфте подать масло, решает электроника, открывающая разные клапаны в гидроблоке и направляя жидкость по разным каналам.

Фрикционные муфты срабатывают плавнее зубчатых и не требуют, чтобы мотор при пере­ключении передач полностью отключался от коробки. Поэтому и крутящий момент от двигателя передаётся коробке передач не сцеплением, а гидротранс­форматором — из-за него коробку и называют гидромеханической. В гидро­трансформаторе есть три соосных колеса с лопатками как у турбины: ведущее, вращающееся вместе с мотором, ведомое, соединённое с входным валом «автомата», и так называемый реактор, который может быть неподвижным или свободно вращаться в одном направлении. Простран­ство между этими колёсами заполнено маслом. Лопатки ведущего колеса закручивают поток масла, в реакторе поток меняет своё направ­ление и, в свою очередь, раскручивает ведомое колесо. Жёсткой связи между двигателем и коробкой нет, поэтому «автомат» переключается плавно, без грубых рывков и ударов.

Это, пожалуй, самая сложная по устройству коробка передач, используемая в автомобилях. И если раньше «автоматы» не любили за медли­тельность и низкую эффектив­ность (часть энергии двигателя тратилась на бесполезное пере­меши­вание масла в гидротранс­форматоре), то сегодня этот тип трансмиссий вплотную приблизился к традици­онным механическим коробкам передач по эффектив­ности, и к роботизированным — по скорости смены передач.

Вариатор

А в вариаторе вообще нет передач, из-за чего его называют бесступенчатой трансмиссией. Точнее, передача как бы и есть, но всего одна, зато с изменяемым пере­даточным числом. А крутящий момент передаётся с ведущего вала на ведомый не через непосред­ственное зацеп­ление вращающихся шкивов, а посредством соединяющего их ремня. Подобно тому, как работал ножной привод швейной машинки у наших бабушек.

Но и шкивы, и ремень у вариатора непростые. Каждый шкив — это два конуса на одном валу, обращённые вершинами друг к другу. Зазор между ними, в котором находится ремень, может меняться — становиться больше или меньше. Если конусы раздвинуть, ремень окажется ближе к оси их вращения и при вращении шкива будет двигаться по малому радиусу. И наоборот, при сближении конусов ремень будет вытесняться наружу и радиус увеличится.

 

Разница в радиусах на ведущем и ведомом валах и определяет передаточное отношение ременного привода. Таким образом, его можно менять — сдвигая конусы на одном валу и одновременно раздвигая на другом. Главное, чтобы ремень на шкивах не проскаль­зывал — для этого он набран из множества поперечных металли­ческих пластинок, соединённых в петлю стальными же лентами. Иногда вместо ремня используют специальную цепь, но принцип работы вариатора это не меняет.

Конусы сдвигаются-раздвигаются примерно также, как сжимаются фрикци­онные муфты в «автомате» — давлением масла, которое регулирует электроника. Есть у вариатора и другие общие с гидро­механической коробкой узлы. Например, гидротранс­форматор, который позволяет автомобилю с вариатором трогаться и останав­ливаться. Или планетарный редуктор — для включения заднего хода.

Сегодня вариатор часто применяют на недорогих автомобилях в качестве более доступной альтернативы традици­онным автоматическим коробкам передач.

Планетарные

Сейчас это более распространенная гидромеханическая коробка передач.

Ее стали использовать благодаря ее компактным размерам и легкому весу. Еще одно преимущество планетарной трансмиссии – это большой срок службы и отсутствие шумов при работе. Но есть у такой коробки и недостатки. Из-за конструктивных особенностей такая трансмиссия более дорогая в производстве. Также она имеет низкий коэффициент полезного действия.

7-ступенчатая роботизированная DSG (DQ200)

Самой проблемной из всех фольксвагеновских коробок передач является 7-ступенчатая DQ200 с двумя сухими сцеплениями. Она появилась в 2006 году. Ставили агрегат на многие автомобили Volkswagen, Audi, Skoda и Seat.

Golf, Jetta, Octavia, Passat, Ibiza, Leon — вот далеко не полный перечень моделей, на которых концерн внедрил «робота-терминатора». Спроектировали DSG7 в свое время вдогонку к гораздо более надежной и ресурсной коробке передач с двумя сцеплениями мокрого типа. Основными претензиями к коробке с двумя сухими сцеплениями были грубые, дерганые переключения передач, вибрации и быстрый износ дисков сцепления. При этом наихудшие результаты показывала семиступенчатые коробки, выпущенные до начала 2014 года.

Как работает планетарная КПП

Ее алгоритм работы предельно прост. Переключение скоростей на планетарной гидромеханической трансмиссии производится при помощи фрикционных муфт. Также для сглаживания ударов при переключении на пониженную, применяют специальную тормозную ленту. Именно при работе «тормоза» снижается сила передачи крутящего момента. Но при этом переключение скоростей более плавное, нежели у вальных аналогов.

В основе планетарной трансмиссии лежит гидравлический трансформатор. Данный элемент расположен между двигателем и КПП. ГДФ состоит из нескольких составляющих:

  • Колесо редуктора.
  • Насос.
  • Турбина.

В народе данный элемент называют «бубликом» из-за его характерной формы.

Когда двигатель работает, крыльчатка насоса вращается вместе с маховиком. Смазка проникает внутрь насоса и дальше под воздействием центробежной силы начинает вращать турбину. Масло из последнего элемента проникает в реактор, который выполняет функцию сглаживания ударов и толчков, а также передает крутящий момент. Циркуляция масла осуществляется по замкнутому кругу. Мощность автомобиля возрастает при вращении турбинного колеса. Максимальный крутящий момент передается при движении машины с места. При этом реактор находится в неподвижном состоянии – его держит муфта. Когда автомобиль набирает скорость, обороты турбины и насоса увеличиваются. Муфта расклинивается и реактор вращается с нарастающей скоростью. Когда обороты последнего элемента будут максимальными, гидротрансформатор перейдет в состояние работы муфты. Так он будет вращаться с такой же скоростью, что и маховик.

Двухступенчатая гидромеханическая коробка передач

В качестве примера гидромеханических передач рассмотрим двухступенчатую гидромеханическую коробку передач. Она состоит из гидротрансформатора 1, механической планетарной коробки передач с многодисковым фрикционом 3 и двумя ленточными тормозными механизмами 2 и 4 и гидравлической системы управлениях кнопочным переключением передач. Кнопки соответственно означают нейтральное положение, задний ход, первую передачу и движение с автоматическим переключением передач. В двухступенчатой механической коробке передач имеются два одинаковых планетарных механизма 5 и 6.

Рис. Гидромеханическая коробка передач:
1 – гидротрансформатор; 2,4 – тормозные механизмы; 3 – фрикцион; 5,6 – планетарные механизмы

В нейтральном положении фрикцион 3, а также тормозные механизмы 2 и 4 выключены. Трогание автомобиля с места происходит при включенной первой передаче. В этом случае масло под давлением поступает в цилиндр тормозного механизма 2, лента которого затягивается, и солнечная шестерня планетарного механизма 6 останавливается.

Если включена кнопка «Движение», то при разгоне автомобиля происходит автоматическое переключение на вторую передачу, что обеспечивается одновременным выключением тормозного механизма 2 и включением фрикциона 3. В этом случае планетарные механизмы 5 и 6 блокируются и вращаются как одно целое.

Для движения автомобиля задним ходом включается только тормозной механизм 4.

В настоящее время автоматические коробки передач имеют электронное управление, что позво­ляет гораздо точнее выдерживать заданные моменты переключения (с точностью до 1 % вместо прежних 6…8 %). Появились дополнительные возможности: по характеру изменения скорости при данной нагрузке на дви­гатель компьютер может вычислить массу автомобиля и ввести соответствующие поправки в алгоритм переключения. Электронное управление предоставило неограниченные возможности для само­диагностики, что позволило корректиро­вать процессы управления в зависимости от многих параметров (от температуры и вязкости жидкости до степени износа фрикционных элементов).

Система автоматического управления обычно состоит из следующих подсистем:

  • функционирования (гидравлические насосы, регуляторы давления)
  • измерительная, собирающая информацию о параметрах управления
  • управляющая, вырабатывающая управляющие сигналы
  • исполнительная, осуществляющая управление переключением передач, работой двигателя
  • подсистема ручного управления
  • подсистема автоматических защит, предотвращающая возникновение опасных ситуаций

Основными элементами электронной системы управления являются электронный блок и рычаг управления.

Гидромеханическая коробка передач: принцип работы и устройство

Классическая конструкция автомобиля подразумевает наличие в нем двух обязательных блоков:

  • коробка переключения передач;
  • сцепление.

Такое описание подходит для знакомой автомобилистам уже много десятилетий механической коробки. Но со временем, по мере развития технологий, стали появляться другие вариации узла КПП, обеспечивающие человеку за рулем больший комфорт передвижения.

Трансмиссия – один из базовых узлов автомобиля. Благодаря ей обеспечивается передача крутящего момента с двигателя машины на колеса. В автомобильном деле много лет безраздельно господствовала механическая КПП, предусматривающая в своем конструктиве описанные выше блоки. Водитель должен был выполнить три последовательных операции:

  • отключить мотор авто от трансмиссии на момент переключения (выжать сцепление);
  • дать команду на смену крутящего момента путем перемещения рычага КПП в нужное
  • положение;
  • отжать сцепление, вернув двигателю связь с колесами.

Но ситуация изменилась, инженеры создали КПП, где педали сцепления нет. Процесс управления автомобилем для человека в таком случае значительно упрощается: ЭБУ осуществляет переход на нужную передачу сам. Управление производится селектором коробки, педалями тормоза и газа.

Трогаясь с места, водитель выжимает тормоз, перемещает селектор в положение D (Drive), отпускает тормоз, и начинает движение. На 1 передачу, 2 и далее АКПП переходит сама, в зависимости от скорости авто, положения педали газа, оборотов двигателя и других факторов, контроль которых осуществляется множеством датчиков.

Этот процесс обеспечивается применением нескольких технологий, гидромеханическая КПП среди которых – самая известная, «обкатанная» в производстве и надежная. В ней смена передач на фрикционах производится посредством циркуляции под давлением трансмиссионного масла по коробке.

Современная гидромеханическая трансмиссия – это сложное устройство, состоящее из следующих основных компонентов:

  • гидротрансформатор
  • ЭБУ – электронный «мозг» коробки, и управляющие механизмы;
  • фрикционные элементы
  • создающий давление масла насос;
  • пружины и каналы гидромеханической системы;
  • механическая коробка.

Последнее – не опечатка, в основе АКПП действительно лежит «механика», конструктивно дополненная блоками автоматического переключения с гидротрансформатором – отсюда и название узла. Типичная гидромеханическая КПП в разрезе:

История коробки-автомата началась в первой четверти 20 века: тогда концерн Ford начал внедрять первые образцы «гидромеханики» в свою продукцию. В СССР АКПП массового распространения среди конечного потребителя не получила, хотя, например, в конце 50-х годов завод ЛАЗ в сотрудничестве с НАМИ разработал и внедрил гидромеханическую трансмиссию в автобусы серии ЛАЗ-695Ж. Позднее ее использовали и в модели ЛиАЗ-677, было выпущено около 200 тыс. автобусов на АКПП.

Гидромеханика ЛАЗ в разрезе:

В современном же автомобилестроении «автомат» встречается очень часто, даже в бюджетных моделях машин.

Достоинства и недостатки гидромеханической коробки

В соответствии с приведенным описанием конструкцию гидромеханической коробки передач можно представить как последовательное соединение гидротрансформатора, коробки передач (обычно планетарной) с фрикционами, а также гидравлической системой управления.
Достоинством такой АКПП считаются:

  1. исключение ручного переключения передач;
  2. обеспечение передачи мощности без прерывания и рывков, особенно при начале движения.

Однако такая АКПП обладает и своими недостатками. Один из них – потеря крутящего момента, вызванная тем, что в состав автоматизированной коробки входит гидротрансформатор.

По данным проведенных замеров, эффективность подобной АКПП не превышает восьмидесяти шести процентов, тогда как у обычной механической коробки она составляет девяносто восемь процентов.

 
Однако это самый простой вариант гидромеханической АКПП, разрабатываются и устанавливаются на легковые автомашины новые, значительно более совершенные варианты подобной коробки.

Гидромеханическая коробка позволяет освободить водителя от их переключения при движении автомашины, что особенно актуально для начинающих водителей, повысить безопасность движения и обеспечить при этом дополнительный комфорт.

Плюсы и минусы гидромеханики

Резюмируя сказанное, можно сделать вывод: гидромеханическая АКПП – это узел, состоящий из гидротрансформатора, модуля механической коробки передач (в большинстве случаев планетарной), оснащенной пакетом фрикционов, системы гидравлического управления и контролирующего электронного блока.

Из плюсов такой связки:

  • удобство водителя: не нужно менять скорости вручную;
  • передача мощности от двигателя идет без «просадок» и рывков, что особенно важно при трогании.

Но есть и очевидные недостатки. Один из них – относительно малый, по сравнению с механикой, КПД, что обусловлено наличием гидротрансформатора.

Важно: в процессе циркуляции рабочего тела часть эффективности теряется: по данным исследований, КПД механической коробки около 98%, аналогичный показатель у «автомата» находится в пределах 86-90%.

Как работает вальная КПП

Вальные «автоматы» довольно широко применяются в производстве автобусов, большегрузных ТС. Слово «вальная» относится к механической коробке в составе АКПП. «Механический» узел бывает в данном случае:

  • многовальным;
  • двухвальным;
  • трехвальным.

Для смены передач задействуются погруженные в специальное масло многодисковые муфты, а задний ход, первая ступень трансмиссии в некоторых случаях включаются зубчатой муфтой. Устройство таких АКПП позволяет переключать скорости фрикционами за счет работы коленвала, при этом не происходит потерь мощности и просадки момента вращения.

Классическая схема – двухвальная, с первичным (ведущим), вторичным (ведомым) валами, несущими шестеренки. В трехвальной схеме имеется также вал промежуточный, где расположена соединенная с главной передачей шестерня.

Вальные модели нашли ограниченное применение в легковых авто: в частности, ими оснащены многие автомобили Honda и ряд моделей концерна Mercedes. Использование подобных КПП связано с определенными техническими затруднениями: на задне приводных машинах к коробке передач применяется требование соосности, и вальная АКПП должна иметь на шестернях не менее двух зацеплений на передачу. А это снижает КПД.

Еще один недостаток – высокие дисковые потери, если число передач у транспортного средства больше трех. В вальной коробке в таком случае много выключенных сцеплений, что ведет к указанным потерям. Кроме того, валы достаточно велики по длине, что делает коробку габаритной и уменьшает свободное пространство в салоне, а также увеличивает шумность и снижает надежность. Частично это решено внедрением трехвальных коробок, с более короткими, жесткими и надежными валами.

Особенности конструкции планетарной КПП

Планетарная гидромеханическая коробка передач состоит из ведущего вала, на котором находится сочлененная шестерня. Также здесь имеются сателлиты, вращающиеся на отдельных осях. Данные элементы вводятся в зацепление с внутренними зубьями коробки и коронной шестерней. Передача крутящего момента осуществляется благодаря действию тормозной ленты. Она затормаживает коронную шестерню. По мере разгона автомобиля, их обороты растут. Задействуется ведомый вал, который воспринимает передачу крутящего момента от ведущего.

Как ГТФ устанавливает нужное передаточное число? Это действие производится автоматически. Когда скорость вращения колеса автомобиля растет, возрастает напор масла, который идет от насоса в турбину. Таким образом, крутящий момент на последней увеличивается. Соответственно, обороты колеса и скорость движения машины тоже растут.

Разновидности гидромеханики

Коробки автомат долгое время устанавливались исключительно на автомобили среднего класса и категории премиум. На сегодняшний день агрегат получил массовое использование и пользуется у автолюбителей все большей популярностью. АКПП способны значительно повысить комфорт во время вождения, но стоит учесть, что такие узлы отличаются по разновидностям, каждая из которых имеет свои преимущества и недостатки. Разобравшись в принципе работы гидромеханических коробках передачи, можно будет определиться с выбором, какой тип АКПП подходит конкретному водителю. Стоит упомянуть о следующих типах гидромеханических КП:

  • Гидромеханический автомат. Это одна из первых трансмиссий подобного рода, которая появилась как альтернатива «механике». Конструкция представляет собой комбинацию гидротрансформатора и планетарной КП. Наличие электронных компонентов позволяют значительно повысить функциональные особенности агрегата.
  • Вариаторная трансмиссия. Пользуется меньшей популярностью из-за того, что отсутствуют привычные фиксированные ступени. К преимуществам можно отнести максимальную плавность хода, а объясняется это как раз отсутствием смены передачей. Конструкция бесступенчатой трансмиссии выглядит следующим образом: для передачи крутящего используется привычный гидравлический преобразователь, а изменение крутящего момента происходит за счет изменения диаметра ведущего и ведомого шкива. Данные компоненты соединяются при помощи ремня и цепи, а изменение диаметра будет зависеть от скорости и нагрузки.
  • Роботизированная коробка. Массово начала использоваться около 20 лет назад. От механики отличий немного, имеется сцепление, но разница заключается в том, управление работой сцепления происходит в автоматическом режиме. К преимуществам «робота» можно отнести невысокую стоимость, динамичный разгон и экономию топлива. Что касается недостатков, главным является снижение уровня комфорта.
  • Преселективные коробки с двойным сцеплением. К таким относятся устройства DSG или Powershift. Агрегат можно отнести к роботизированным КП, но с более высокими техническими характеристиками. По конструкции напоминает привычную механику, но в этот раз инженеры использовали сразу два агрегата, помещенные в одну коробку.

Роботизированные агрегаты и АКПП – это устройства, цель которых заключается в упрощении взаимодействия водителя с трансмиссией.

Функции гидротрансформатора

Гидравлический трансформатор, по сути, являет собой усовершенствованную гидромуфту. Обычная муфта выполняет задачу простого вращения, то в случае АКПП добавляется увеличение крутящего положения. Агрегат выполняет несколько основных функций, одной из которых является демпфирующее действие во время вращательного движения. При постоянной разнице скорости вращения возникают потери, поэтому происходит блокировка, в результате которой вращающий момент начинает передаваться через демпфирующие пружины. Блокировочная муфта выполняет еще одну полезную функцию, предотвращение повышения расхода топлива. Говоря о функциях гидромеханической трансмиссии автомобиля, стоит отметить и некоторые негативные факторы.

Важно! При блокировке нередко наблюдается повышенное давление на важные компоненты мотора и трансмиссии. Фрикционные компоненты могут изнашиваться быстрей, а в масло могут попадать частицы, образовавшиеся в результате трения. В результате ходовые характеристики могут ухудшиться, а смена передачи перестанет быть плавной. Автовладельцам необходимо беречь коробку во время разгона или торможения.

Роль трансмиссии в машине

Для транспортного средства трансмиссией является все, что создает подачу крутящего момента от двигателя к колесам, например, КПП со сцеплением, как это в классических автомобилях. Сегодня в машинах их сменяют на АККП, когда управление облегчается, сцепление не предусмотрено, а переключения производятся автоматически.

Выполнение этих процессов обеспечивает гидромеханическая коробка передач. Для понимания процесса надо знать о двух главных моментах, возникающих при управлении автомобилем:

  • При переключении скоростей трансмиссия отключается от двигателя;
  • После смены дорожных условий выполняется изменение величины крутящего момента.

Это происходит после того, как выжато сцепление и переключена скорость коробкой передач (в обычных машинах). В транспортных средствах с АКПП эти процессы в большинстве случаев производит гидромеханическая коробка передач.

АКП с электронным управлением

В качестве примера современной АКП с электронным управлением рассмотрим шестиступенчатую коробку передач 09G японского концерна AISIN.

АКП состоит из гидротрансформатора, механической планетарной коробки передач с многодисковыми фрикционами и многодисковыми тормозными механизмами, гидравлической системы, систем охлаждения и смазки, электрической системы.

Рис. Разрез автоматической шестиступенчатой коробки передач 09G:
К– многодисковые муфты; В – многодисковые тормоза; S – солнечные шестерни; Р – сателлиты; РТ – водило; F – обгонная муфта; 1 – вал турбинного колеса; 2 – ведомая шестерня промежуточной передачи; 3 – жидкостный насос

Планетарные ряды объединены по схеме, разработанной Лепеллетье (Lepelletier). Крутящий момент двигателя подводится к одинарному планетарному ряду. Далее он направляется на сдвоенный планетарный ряд Равиньо (Ravigneaux).

Рис. Двухредукторная планетарная система Лепеллетье:
а – обычный планетарный редуктор; б – планетарный редуктор Равиньо; 1 – вал турбинного колеса; Р1 – сателлит коронной шестерни Н1; Р2 – сателлит солнечной шестерни 2; Р3 – сателлит коронной шестерни 1; S1 ­­– солнечная шестерня 1; S2 — солнечная шестерня 2; S3 — солнечная шестерня 3; Н1 – коронная шестерня 1; Н2 – коронная шестерня 2

Управление одинарным планетарным рядом производится посредством многодисковых муфт K1 и K3 и многодискового тормоза B1. Число сателлитов в планетарных рядах выбирается в зависимости от передаваемого крутящего момента.

Сдвоенный планетарный ряд управляется посредством многодисковой муфты K2, многодискового тормоза B2 и обгонной муфты F. В системе управления муфтами предусмотрены устройства динамической компенсации рабочего давления, которые делают работу муфт независящей от частоты вращения. Муфты K1, K2 и K3 служат для подвода крутящего момента к планетарным рядам, а с помощью тормозов B1 и B2, а также обгонной муфты обеспечивается передача реактивных моментов на картер коробки передач.

Давление в рабочих цилиндрах муфт и тормозов изменяется посредством регулирующих клапанов.

Обгонная муфта F представляет собою механизм, который работает параллельно с тормозом.

Обслуживание и ремонт гидромеханической коробки передач

При эксплуатации данной трансмиссии, необходимо следить за уровнем масла. Данная жидкость здесь является рабочей. Именно масло задействует турбины для передачи крутящего момента. На механических же коробках оно просто смазывает трущиеся шестерни. Производители рекомендуют производить замену масла на гидромеханических коробках каждые 60 тысяч километров. Стоит отметить, что в конструкции такой КПП имеется свой фильтр. Он тоже меняется при достижении данного срока. Эксплуатация на низком уровне масла грозит пробуксовкой и перегревом трансмиссии.

Что касается ремонта, чаще всего выходит из строя гидравлический трансформатор. Признак неисправности – невозможность включения одной из передач, увеличенное время «срабатывания» нужной скорости. Также в этом случае разбирается и чистится сетка-маслозаборник и меняется клапан золотникового типа. Если имеются течи, необходимо проверить момент затяжки болтов и состояние уплотнительных элементов. Во время эксплуатации на фильтре образуется металлическая стружка. Она забивает механизм и уровень давления масла падает. При повышенных нагрузках ресурс данного очистительного элемента снижается. В таком случае его рекомендуют менять раз в 40 тысяч километров.

Гидротрансформатор

Гидротрансформатор

В современный автомат входит гидротрансформатор, выполняющий в автомобиле с КПП (подает вращающий момент) функции сцепления. Благодаря гидротрансформатору транспортное средство плавно трогается. Снижение динамических нагрузок в трансмиссии приводит к повышению долговечности двигателя, а также остальных механизмов трансмиссии. Уменьшение количества переключений передач уменьшает утомляемость водителя.

Применение гидротрансформатора значительно увеличивает проходимость автомобиля по песку и снегу. Он создает устойчивую силу тяги с очень маленькой скоростью вращения на ведущих колесах, чем увеличивается их сцепление с поверхностью дорожного покрытия. Получается, что использование автоматических трансмиссий рекомендуется на внедорожниках. Гидротрансформатор имеет достаточно несложное устройство и объединяет три колеса:

  • Двигатель с гидротрансформатором связывает насосное;
  • Обеспечивает связь с первичным валом турбинное;
  • Усиливает крутящий момент реакторное.

Турбины на 3/4 помещены в масло и защищены специальным корпусом. Рабочий процесс гидромеханического привода основывается на том, что вращающий момент направляется от двигателя к насосному колесу, к турбинному колесу подается поток масла. Оно раскручивает колесо, и усилие предается на вал коробки скоростей. Весь процесс циркуляции масла проходит по особой траектории: с внешней стороны насосного кольца направляется на турбинное, а далее назад через центр механизма идет к насосному.

Турбина

Гидротрансформатор автоматически меняет крутящий момент по мере нагрузки, далее он передается к механической коробке, и передачи переключаются фрикционными устройствами. Гидравлический привод определяет достаточное передаточное число, изменяя напор жидкости для ее циркулирования между напорным диском и турбинным. Свою работу гидротрансформатор выполняет непосредственно с планетарной коробкой.

Как продлить ресурс

Чтобы увеличить срок эксплуатации гидромеханической коробки, необходимо следить за уровнем масла. При его недостаточном количестве возникает перегрев коробки. Рабочая температура не должна превышать 90 градусов. Современные автомобили оснащаются датчиком давления масла. Его загорелась контрольная лампа, не стоит игнорировать ее. В дальнейшем это может спровоцировать поломку гидротрансформатора.

Также не следует переключать передачи без выжима педали тормоза. Коробка примет на себя весь удар, особенно если переключиться с первой на заднюю без предварительного оттормаживания. На ходу, если это затяжной спуск, не рекомендуется включать «нейтралку». Это также существенно снижает ресурс гидравлического трансформатора и рабочих муфт. В остальном же необходимо придерживаться регламента замены масла и фильтров. Срок эксплуатации данной КПП составляет порядка 350 тысяч километров.

Источники

  • https://mag.auto.ru/article/gearboxesguide/
  • https://autodont.ru/transmission/gidromexanicheskaya-transmissiya
  • https://FB.ru/article/285458/gidromehanicheskaya-korobka-peredach-printsip-rabotyi-i-ustroystvo
  • https://www.zr.ru/content/articles/918525-5-samykh-lomuchikh-akp-ne-svyazyv/
  • https://ustroistvo-avtomobilya.ru/avtomaticheskie-korobki-peredach/gidromehanicheskaya-korobka-peredach/
  • https://motoran.ru/transmisii/gidromehanicheskaya-korobka-peredach
  • https://ZnanieAvto.ru/kpp/gidromexanicheskaya-korobka-peredach.html
  • https://DriverTip.ru/osnovy/gidromehanicheskaya-korobka-peredach-konstruktsionnye-osobennosti-preimuschestva.html

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Все об устройстве автомобилей, советы, помощь
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: